Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.
نویسندگان
چکیده
Solar-driven water splitting is a key photochemical reaction that underpins the feasible and sustainable production of solar fuels. An amorphous cobalt-phosphate catalyst (Co-Pi) based on earth-abundant elements has been recently reported to efficiently promote water oxidation to protons and dioxygen, a main bottleneck for the overall process. The structure of this material remains largely unknown. We here exploit ab initio and classical atomistic simulations combined with metadynamics to build a realistic and statistically meaningful model of Co-Pi nanoparticles. We demonstrate the emergence and stability of molecular-size ordered crystallites in nanoparticles initially formed by a disordered Co-O network and phosphate groups. The stable crystallites consist of bis-oxo-bridged Co centers that assemble into layered structures (edge-sharing CoO(6) octahedra) as well as in corner- and face-sharing cubane units. These layered and cubane motifs coexist in the crystallites, which always incorporate disordered phosphate groups at the edges. Our computational nanoparticles, although limited in size to ~1 nm, can contain more than one crystallite and incorporate up to 18 Co centers in the cubane/layered structures. The crystallites are structurally stable up to high temperatures. We simulate the extended X-ray absorption fine structure (EXAFS) of our nanoparticles. Those containing several complete and incomplete cubane motifs-which are believed to be essential for the catalytic activity-display a very good agreement with the experimental EXAFS spectra of Co-Pi grains. We propose that the crystallites in our nanoparticles are reliable structural models of the Co-Pi catalyst surface. They will be useful to reveal the origin of the catalytic efficiency of these novel water-oxidation catalysts.
منابع مشابه
Efficient Determination of Butylated Hydroxyanisole Using an Electrochemical Sensor Based on Cobalt Oxide Nanoparticles Modified Electrode
A simple and reliable electrochemical sensor based on cobalt oxide nanoparticles modified glassy carbon electrode (GCE/CoOxNPs) for determination of butylated hydroxyanisole is presented here. The nanoparticles were fabricated by electrodepositing method. The modified electrode shows excellent catalytic activity toward butylated hydroxyanisole oxidation in pH 12.0 phosphate buffer solution (PBS...
متن کاملCatalytic Removal of Methane Over Cobalt Chromite (CoCr2O4) Nanospinels for CNG Vehicles
Cobalt chromite (CoCr2O4) with normal spinel structure, shows catalytic activity for oxidation of unburned methane in the natural gas vehilcles (NGV). In this study, CoCr2O4 nanoparticles were synthesized through a conventional co-precipitation technique and investigated for the catalytic combustion of methane. Cobalt nitrate hexahydrate,...
متن کاملEfficient Determination of Butylated Hydroxyanisole Using an Electrochemical Sensor Based on Cobalt Oxide Nanoparticles Modified Electrode
A simple and reliable electrochemical sensor based on cobalt oxide nanoparticles modified glassy carbon electrode (GCE/CoOxNPs) for determination of butylated hydroxyanisole is presented here. The nanoparticles were fabricated by electrodepositing method. The modified electrode shows excellent catalytic activity toward butylated hydroxyanisole oxidation in pH 12.0 phosphate buffer solution (PBS...
متن کاملCoordination tuning of cobalt phosphates towards efficient water oxidation catalyst
The development of efficient and stable water oxidation catalysts is necessary for the realization of practically viable water-splitting systems. Although extensive studies have focused on the metal-oxide catalysts, the effect of metal coordination on the catalytic ability remains still elusive. Here we select four cobalt-based phosphate catalysts with various cobalt- and phosphate-group coordi...
متن کاملStructural requirements in lithium cobalt oxides for the catalytic oxidation of water.
The development of water oxidation catalysts (WOCs) to replace costly noble metals in commercial electrolyzers and solar fuel cells is an unmet need that is preventing the global development of hydrogen fuel technologies. Two of the main challenges in realizing catalytic water splitting are lowering the substantial overpotential that is required to achieve practical operating current densities ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2012